If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-9=35
We move all terms to the left:
x^2-9-(35)=0
We add all the numbers together, and all the variables
x^2-44=0
a = 1; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·1·(-44)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{11}}{2*1}=\frac{0-4\sqrt{11}}{2} =-\frac{4\sqrt{11}}{2} =-2\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{11}}{2*1}=\frac{0+4\sqrt{11}}{2} =\frac{4\sqrt{11}}{2} =2\sqrt{11} $
| -16h=102 | | 2x+2(x+70)=50 | | 10x-23-173=180 | | q–35=-3 | | 12.38+0.08m=12.88-0.09m | | 2(u-1+4u=3(u-1+7 | | 2(u-1+4u+3(u-1)=7 | | 4(h−70)=24 | | w=14-6w | | −20= −28+4t−28+4t | | (1/2)x+(3/2)=(7/2) | | 24=4(h−70) | | -8x^2=-1152 | | -3(2x+8=0 | | -1=z | | 6x-14=3x-2 | | p-94/2=2 | | -1.3=11.5+y/8 | | 8y-12=14 | | 2(m+2)=30 | | 12b+1=26+21 | | 2z-5z-5=3z+1 | | p/8+30=36 | | 14.09+0.11m=14.59+0.08m | | p8+ 30=36 | | 6(w+1)-10=4(w-1)1+2w | | x+2x-3+x+5=180 | | -2(q+45)=68 | | -33=4u-5 | | 17=(x/4)+9 | | 1x+-3(2x+-7)=76 | | 7x+3-3=15 |